翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

cylindric algebra : ウィキペディア英語版
cylindric algebra
The notion of cylindric algebra, invented by Alfred Tarski, arises naturally in the algebraization of first-order logic with equality. This is comparable to the role Boolean algebras play for propositional logic. Indeed, cylindric algebras are Boolean algebras equipped with additional cylindrification operations that model quantification and equality. They differ from polyadic algebras in that the latter do not model equality.
== Definition of a cylindric algebra ==

A cylindric algebra of dimension \alpha (where \alpha is any ordinal number) is an algebraic structure (A,+,\cdot,-,0,1,c_\kappa,d_)_ such that (A,+,\cdot,-,0,1) is a Boolean algebra, c_\kappa a unary operator on A for every \kappa, and d_ a distinguished element of A for every \kappa and \lambda, such that the following hold:
(C1) c_\kappa 0=0
(C2) x\leq c_\kappa x
(C3) c_\kappa(x\cdot c_\kappa y)=c_\kappa x\cdot c_\kappa y
(C4) c_\kappa c_\lambda x=c_\lambda c_\kappa x
(C5) d_=1
(C6) If \kappa\notin\, then d_=c_\kappa(d_\cdot d_)
(C7) If \kappa\neq\lambda, then c_\kappa(d_\cdot x)\cdot c_\kappa(d_\cdot -x)=0
Assuming a presentation of first-order logic without function symbols,
the operator c_\kappa x models existential quantification over variable \kappa in formula x while the operator d_ models the equality of variables \kappa and \lambda. Henceforth, reformulated using standard logical notations, the axioms read as
(C1) \exists \kappa. \mathit \Leftrightarrow \mathit
(C2) x \Rightarrow \exists \kappa. x
(C3) \exists \kappa. (x\wedge \exists \kappa. y) \Leftrightarrow (\exists\kappa. x) \wedge (\exists\kappa. y)
(C4) \exists\kappa \exists\lambda. x \Leftrightarrow \exists \lambda \exists\kappa. x
(C5) \kappa=\kappa \Leftrightarrow \mathit
(C6) If \kappa is a variable different from both \lambda and \mu, then \lambda=\mu \Leftrightarrow \exists\kappa. (\lambda=\kappa \wedge \kappa=\mu)
(C7) If \kappa and \lambda are different variables, then \exists\kappa. (\kappa=\lambda \wedge x) \wedge \exists\kappa. (\kappa=\lambda\wedge \neg x) \Leftrightarrow \mathit

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「cylindric algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.